1. Complete the factor trees below and use them to write each number as the product of its prime factors. Give your final answers in index form where appropriate.

$50=$
$105=$

$$
45=
$$

\qquad

$24=$

Writing a Number as a Product of Prime Factors

2. Use factor trees to write each number as the product of its prime numbers. Give your final answers in index form where appropriate.

$98=$ \qquad

$$
100=
$$

240
 $625=$
3. Write each of the following numbers as the product of its prime factors, giving your answers in index form where appropriate.
a. $30=$
b. $66=$
c. $132=$
d. $1000=$
e. $225=$
f. $156=$
g. $900=$
h. $784=$
4. Which of the numbers from $q 3$ are square numbers? Use your prime factorisation to justify your answer.

Writing a Number as a Product of Prime Factors - Answers

1. Complete the factor trees below and use them to write each number as the product of its prime factors. Give your final answers in index form where appropriate.

$50=2 \times 5^{2}$

$45=3^{2} \times 5$
24

12

3

$24=2^{3} \times 3$
2. Use factor trees to write each number as the product of its prime numbers. Give your final answers in index form where appropriate.

$98=2 \times 7^{2}$
$100=2^{2} \times 5^{2}$

$240=2^{4} \times 3 \times 5$
$625=5^{4}$
3. Write each of the following numbers as the product of its prime factors, giving your answers in index form where appropriate.
a. $\quad 30=2 \times 3 \times 5$
b. $66=2 \times 3 \times 11$
c. $\quad 132=2^{2} \times 3 \times 11$
d. $\quad 1000=2^{3} \times 5^{3}$
e. $\quad 225=3^{2} \times 5^{2}$
f. $\quad 156=2 \times 3 \times 13$
g. $\quad 900=2^{2} \times 3^{2} \times 5^{2}$
h. $784=2^{4} \times 7^{2}$
4. Which of the numbers from $q 3$ are square numbers? Use your prime factorisation to justify your answer. 225, 900 and 784 as all of their factors are www.DoingMaths.co.uk raised to even powers.

