Investigation to use speed time graphs to analyse a boy's journey

Procedure

Start your stopwatch the moment the boy sets off on the bike. Record the time, in seconds, when the boy reaches each of the incidents in the results table.

Results

Incident	Bike sets off	Leaps bike over hedge	Bike swerves in front of lorry	Lorry hits first car	Bike goes down ramp	Bike stops near bridge
Speed $(\mathrm{m} / \mathrm{s})$	0	6	6	9	0	0

Conclusion

Plot these results on a speed time graph, with time on the x axis and speed on the y axis. Label each point that the boy changes motion A, B, C, D, E, F, G, H, and I. Point A on the graph is at time 0 , speed 0 .

Divide the area below the graph line into five triangles and 4 rectangles. Your teacher will show you how on the whiteboard.

Analysis

Work out the following accelerations:

Acceleration A to B	Acceleration B to C
Acceleration C to D	Acceleration D to E
Acceleration E to $F —$	Acceleration F to G
Acceleration G to $H —$	Acceleration H to I

Work out the following distances:
Distance A to B \qquad Distance B to C \qquad Distance C to D \qquad
Distance D to E \qquad Distance E to F \qquad Distance F to G \qquad
Distance G to H \qquad Distance H to I \qquad Total distance \qquad

